News for faculty and staff

Contact | Past Issues

Week of April 15, 2013

Research


What remains of Mars’ atmosphere is still dynamic

Mars has lost much of its original atmosphere, but what’s left remains active, according to recent findings from NASA’s Mars rover Curiosity that involve a U-M researcher.

Rover team members reported diverse findings recently at the European Geosciences Union 2013 General Assembly, in Vienna, Austria. Evidence has strengthened this month that Mars lost much of its original atmosphere by a process of gas escaping from the top of the atmosphere.

Artist rendering of NASA’s Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars that landed on the planet in August 2012. Image by NASA/JPL-Caltech.

Curiosity’s Sample Analysis at Mars (SAM) instrument analyzed an atmosphere sample last week using a process that concentrates selected gases. The results provided the most precise measurements ever made of isotopes of argon in the Martian atmosphere. Isotopes are variants of the same element with different atomic weights.

“We found arguably the clearest and most robust signature of atmospheric loss on Mars,” said Sushil Atreya, professor of atmospheric and space sciences and a SAM co-investigator.

SAM found that the Martian atmosphere has about four times as much of a lighter stable isotope (argon-36) compared to a heavier one (argon-38). This removes previous uncertainty about the ratio in the Martian atmosphere from 1976 measurements from NASA’s Viking project and from small volumes of argon extracted from Martian meteorites. The ratio is much lower than the solar system’s original ratio, as estimated from argon-isotope measurements of the sun and Jupiter. This points to a process at Mars that favored preferential loss of the lighter isotope over the heavier one.

Curiosity measures several variables in today’s Martian atmosphere with the Rover Environmental Monitoring Station (REMS), provided by Spain. While daily air temperature has climbed steadily since the measurements began eight months ago and is not strongly tied to the rover’s location, humidity has differed significantly at different places along the rover’s route. These are the first systematic measurements of humidity on Mars.

Trails of dust devils have not been seen inside Gale Crater, but REMS sensors detected many whirlwind patterns during the first hundred Martian days of the mission, though not as many as were detected in the same length of time by earlier missions.

“A whirlwind is a very quick event that happens in a few seconds and should be verified by a combination of pressure, temperature and wind oscillations and, in some cases, a decrease is ultraviolet radiation,” said Javier Gómez-Elvira, REMS principal investigator, of the Centro de Astrobiología, Madrid.

Dust distributed by the wind has been examined by Curiosity’s laser-firing Chemistry and Camera (ChemCam) instrument. Initial laser pulses on each target hit dust. The laser’s energy removes the dust to expose underlying material, but those initial pulses also provide information about the dust.

NASA’s Mars Science Laboratory Project is using Curiosity to investigate the environmental history within Gale Crater, a location where the project has found that conditions were long ago favorable for microbial life.

Curiosity, carrying 10 science instruments, landed in August 2012 to begin its two-year prime mission. NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the project for NASA’s Science Mission Directorate in Washington.

READER COMMENTS (0) POST A COMMENT 

Leave a comment

All fields are required.




email address will not be shown


Please enter the words you see below for anti-spam purposes:
NO SPAM

 

STAFF SPOTLIGHT

Karen Simpson, student financial assistant, Student Financial Services, on the increase in technology in her 35 years at U-M: “When I first came here we were typing student checks on typewriters. Now, everything is very modernized, very streamlined.”

EVENTS

“Crazy for You,” 7:30 p.m. April 18, 8 p.m. April 19-20 and 2 p.m. April 21, Power Center for the Performing Arts.

View/Submit Events